Table 1. Atomic coordinates $(\times 10^4)$ and equivalent isotropic thermal parameters ($Å^2 \times 10^3$)

Table 2. Selected bond distances (Å) and angles (°)

	r	ν	7	<i>U_</i> *	R
Rh	2500 (1)	1877 (1)	1122 (1)	30(1)	Ν
N(1)	1610 (3)	2206 (3)	1122(1)	32 (2)	C(
C	1028 (4)	2021 (4)	1126 (3)	44 (4)	
C(2)	864 (5)	1406 (5)	953 (3)	56 (4)	N
C(3)	655 (6)	2500	1250	53 (5)	U U
C(4)	3336 (5)	1617 (4)	1060 (3)	39 (3)	N
N(2)	3843 (4)	1480 (4)	996 (3)	47 (3)	<u> </u>
C	4456 (4)	1255 (5)	891 (4)	54 (4)	R
C(6)	4623 (4)	750 (5)	1198 (4)	72 (5)	
C(7)	4901 (5)	1776 (5)	923 (5)	97 (6)	
C(8)	4427 (6)	1027 (6)	422 (4)	82 (5)	di
P(1)	2331 (1)	3515(1)	670 (1)	34(1)	2
C	1745 (4)	4107 (4)	703 (3)	30 (3)	<u> </u>
C(10)	1212 (5)	4102 (5)	457 (3)	48 (4)	ta
C	791 (5)	4568 (6)	507 (4)	65 (5)	R
C(12)	894 (6)	5048 (6)	790 (4)	66 (5)	in
C(13)	1432 (5)	5060 (6)	1028 (3)	63 (4)	111
C(14)	1857 (5)	4593 (4)	989 (3)	45 (4)	tr
C(15)	2910 (5)	3891 (4)	333 (3)	45 (4)	(F
CIG	3343 (5)	4268 (5)	535 (4)	53 (4)	-
$\dot{\alpha}_{17}$	3779 (6)	4553 (6)	289 (6)	84 (6)	- pi
C(18)	3793 (7)	4514 (6)	- 151 (6)	92 (7)	pl
C(19)	3362 (7)	4141 (6)	- 364 (5)	82 (6)	R
C(20)	2924 (5)	3852 (5)	- 119 (4)	58 (4)	-1.
C(21)	1998 (4)	2901 (4)	342 (3)	37 (3)	un
P(2)	2439 (1)	2189 (1)	408 (1)	35 (1)	- 38
C(22)	3122 (5)	2320 (4)	88 (3)	50 (4)	th
C(23)	3627 (5)	2599 (5)	277 (4)	53 (4)	
C(24)	4129 (6)	2749 (5)	17 (5)	75 (5)	
C(25)	4140 (7)	2647 (6)	- 419 (5)	91 (7)	
C(26)	3637 (8)	2375 (7)	- 604 (4)	101 (7)	10
C(27)	3123 (6)	2201 (5)	- 361 (3)	69 (5)	10
C(28)	2010 (5)	1608 (4)	112 (3)	45 (4)	at
C(29)	1495 (6)	1728 (5)	- 138 (3)	65 (4)	
C(30)	1168 (7)	1261 (6)	- 319 (4)	93 (6)	
C(31)	1367 (8)	670 (7)	- 266 (5)	116 (8)	
C(32)	1892 (7)	528 (5)	- 35 (5)	106 (7)	
C(33)	2199 (6)	1002 (5)	152 (4)	72 (5)	H
P(3)	633 (2)	1719 (1)	3233 (1)	59 (1)	
F(1)	738 (4)	2392 (3)	3412 (2)	104 (3)	0
F(2)	526 (3)	1054 (3)	3060 (3)	94 (3)	
F(3)	712 (4)	1447 (4)	3698 (3)	125 (4)	
F(4)	558 (4)	1983 (3)	2759 (2)	101 (3)	SF
F(5)	- 79 (3)	1788 (4)	3317 (3)	109 (4)	51
F(6)	1338 (3)	1655 (5)	3140 (3)	122 (4)	

* Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ii} tensor.

	Rh—N(1)	2.078 (6)	Rh—C(4)	1.920 (10)
*	Rh—P(2)	2.298 (2)	C(4)—N(2)	1.161 (13)
1	N(2)—C(5)	1.462 (13)	P(1) - C(21)	1.825 (9)
(2)	C(21)—P(2)	1.838 (9)		
(4)	N(1)—Rh—C(4)	177.0 (3)	N(1)—Rh—P(2)	85.9 (2)
(4)	C(4)—Rh—P(2)	92.7 (3)	Rh - N(1) - C(1)	140.2 (6)
(5)	N(1) - C(1) - C(2)	122.9 (8)	Rh-C(4)-N(2)	175.5 (8)
(3)	C(4) - N(2) - C(5)	174.1 (10)	P(1) - C(21) - P(2)	110.5 (5)
(3)	Rh—P(2)—C(21)	112.7 (3)		
(4)				

carbonyl complex is 3.060 Å compared to 828 (1) Å for the title complex. The shorter disnce for the title complex is consistent with an h—Rh bond order of $\frac{1}{2}$ for the Rh₂³⁺ core. The crease in bond order was predicted from the eleconic model developed by Hoffman and co-workers Hoffmann & Hoffman, 1981) for A-frame comexes since oxidation of the parent Rh^I-Rh^I comlex results in removal of an electron from an h-Rh antibonding orbital. The small bite size of ne pyrazolate ligands results in a dihedral angle of 8.4° between the two least-squares planes formed by he square-plane core atoms of the two Rh atoms.

We are grateful to Johnson Matthey, Inc. for a an of rhodium trichloride and Research Corporion for support of this work.

References

OFFMANN, D. J. & HOFFMAN, R. (1981). Inorg. Chem. 20, 3543-3555.

- ro, L. A., Carmona, D., Peréz, P. L., Esteban, M., Tiripic-CHIO, A. & TIRIPICCHIO-CAMELLINI, M. (1985). J. Chem. Soc. Dalton Trans. pp. 973-979.
- HELDRICK, G. M. (1990). SHELXTL PLUS User's Manual, release 4.0. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.
- WOODS, C., TORTORELLI, L. J., RILLEMA, D. P., BURN, J. L. E. & DEPRIEST, J. C. (1989). Inorg. Chem. 28, 1673-1679.

Acta Cryst. (1992). C48, 1312-1314

μ -[Bis(diphenylphosphino)methane]-bis[pentafluorophenylgold(I)] at 178 K

BY PETER G. JONES AND CARSTEN THÖNE

Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, W-3300 Braunschweig, Germany

(Received 10 October 1991; accepted 4 December 1991)

 $D_x = 1.829 \text{ Mg m}^{-3}$, $\lambda(\text{Mo } K\alpha) = 0.71069 \text{ Å}$, $\mu = 7.4 \text{ mm}^{-1}$, F(000) = 2088, T = 178 K, R = 0.046 for $[Au_2(C_{25}H_{22}P_2)(C_6F_5)_2], M_r = 1112.4,$ Abstract. monoclinic, $P2_1/c$, a = 14.141 (4), b = 20.209 (5), c =14.207 (4) Å, $\beta = 95.85$ (3)°, V = 4039 (2) Å³, Z = 4, 5181 reflections. The molecule crystallizes in a cis

> 0108-2701/92/071312-03\$06.00 © 1992 International Union of Crystallography

Table 1. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement coefficients ($A^2 \times 10^4$)

Equivalent isotropic U is defined as one third of the trace of the orthogonalized U_{ii} tensor.

	x	у	Ζ	U_{eq}
Au(1)	5601.3 (3)	2063.8 (2)	7220.7 (3)	313 (2)
C(1)	6881 (8)	2561 (6)	7408 (8)	315 (28)
C(12)	6928 (9)	3250 (6)	7426 (8)	312 (28)
C(13)	7767 (8)	3592 (6)	7547 (8)	312 (28)
C(14)	8624 (9)	3242 (6)	7625 (9)	380 (31)
C(15)	8592 (10)	2567 (7)	7616 (9)	422 (33)
C(16)	7741 (9)	2248 (6)	7531 (8)	334 (29)
F(12)	6123 (6)	3615 (4)	7317 (6)	534 (30)
F(13)	7798 (6)	4251 (4)	7579 (6)	625 (33)
F(14)	9465 (5)	3569 (4)	7698 (7)	700 (36)
F(15)	9419 (6)	2219 (5)	7707 (7)	767 (40)
F(16)	7762 (6)	1576 (4)	7543 (6)	612 (33)
Au(2)	5641.9 (3)	1821.2 (3)	5025.8 (3)	306 (2)
C(21)	6965 (8)	2244 (6)	5022 (8)	294 (28)
C(22)	7112 (9)	2912 (6)	5108 (8)	350 (29)
C(23)	8006 (9)	3210 (6)	5166 (9)	363 (30)
C(24)	8790 (10)	2819 (7)	5098 (9)	411 (33)
C(25)	8669 (10)	2153 (7)	4972 (9)	427 (33)
C(26)	7768 (8)	1895 (6)	4941 (8)	301 (28)
F(22)	6361 (5)	3337 (4)	5219 (5)	470 (27)
F(23)	8113 (6)	3872 (4)	5252 (6)	583 (32)
F(24)	9643 (5)	3097 (4)	5144 (7)	654 (35)
F(25)	9423 (5)	1762 (4)	4904 (7)	677 (37
F(26)	7701 (6)	1225 (4)	4831 (6)	537 (30
P(1)	4165 (2)	1533 (2)	7100 (2)	290 (10
cú	3973 (8)	941 (6)	6119 (7)	281 (27)
C(112)	3272 (5)	2467 (4)	4629 (6)	374 (31)
C(113)	2478	2860	4366	449 (34
C(114)	1602	2566	4086	498 (36)
C(115)	1519	1879	4068	570 (40)
C(116)	2313	1485	4331	420 (33)
càní	3189	1779	4612	310 (28)
C(122)	4516 (5)	701 (3)	3298 (5)	366 (30
C(123)	4357	242	2565	420 (33)
C(124)	3815	- 323	2687	387 (31)
C(125)	3433	- 429	3542	342 (29)
C(126)	3592	30	4275	361 (30)
C(121)	4134	595	4153	276 (26)
P(2)	4220 (2)	1286 (2)	4980 (2)	275 (10)
C(212)	3363 (5)	2781 (4)	7052 (6)	382 (32)
C(213)	2620	3236	6923	532 (38)
C(214)	1692	3017	6679	565 (40)
C(215)	1507	2342	6564	443 (34)
C(216)	2250	1887	6693	371 (30)
C(211)	3178	2106	6937	336 (29)
C(222)	4560 (5)	1190 (4)	8972 (6)	330 (29)
C(223)	4425	851	9804	471 (36)
C(224)	3719	369	9801	521 (38)
C(225)	3148	225	8966	537 (39)
C(226)	3284	563	8135	392 (32)
C(221)	3990	1046	8138	279 (27

configuration with a short intramolecular Au···Au contact of 3.163 (1) Å. The linear coordination at Au is scarcely distorted: P—Au—C 176.6, 175.8 (4)°. The *ipso* angles of the C₆F₅ rings are narrow: 114.8, 113.6 (11)°.

Experimental. Single crystals were obtained by diffusion of petrol ether into a solution of the title compound in dichloromethane. A colourless prism $0.6 \times 0.25 \times 0.2$ mm was mounted on a glass fibre with inert oil and transferred to the cold gas stream of a Siemens R3m/V diffractometer with LT-2 lowtemperature attachment. Intensities were measured to $2\theta_{\text{max}} 50^{\circ}$ using graphite-monochromated Mo $K\alpha$ radiation; ω -scan mode, rate $7.32^{\circ} \text{min}^{-1}$, range 1.10° . Of 8826 measured reflections, 7078 were unique ($R_{\text{int}} = 0.019$, index ranges h - 16 to 16, k 0

Table 2. Selected interatomic distances (Å) and angles (°)

Au(1)—C(11)	2.063 (12)	Au(1)…Au(2)	3.163 (1)
Au(1) - P(1)	2.288 (3)	Au(2)-C(21)	2.058 (12)
Au(2)—P(2)	2.279 (3)	P(1) - C(1)	1.834 (11)
P(1) - C(211)	1.811 (8)	P(1)-C(211)	1.811 (8)
C(1) - P(2)	1.828 (11)	C(111) - P(2)	1.799 (7)
C(121)—P(2)	1.821 (7)	. ,	
	.,		
C(11) - Au(1) - P(1)	176.6 (3)	C(12)-C(11)-C(16)	114.8 (11)
C(21)—Au(2)—P(2)	175.8 (3)	C(22)C(21)C(26)	113.6 (11)
Au(1) - P(1) - C(1)	115.1 (4)	Au(1) - P(1) - C(211)	112.1 (3)
C(1) - P(1) - C(211)	105.5 (4)	Au(1) - P(1) - C(221)	112.8 (3)
C(1) - P(1) - C(221)	104.0 (4)	C(211)—P(1)—C(221)	106.5 (4)
P(1) - C(1) - P(2)	113.4 (6)	Au(2) - P(2) - C(1)	113.8 (4)
Au(2) - P(2) - C(111)	115.6 (3)	C(1)-P(2)-C(111)	104.2 (5)
Au(2) - P(2) - C(121)	112.5 (3)	C(1) - P(2) - C(121)	105.9 (4)
C(111) - P(2) - C(121)	103.8 (4)		

Fig. 1. The title compound in the crystal, showing the atomnumbering scheme. Radii are arbitrary.

to 24, l0 to 16) and 5181 with $F > 4\sigma(F)$ were considered observed. The cell constants were refined from setting angles of 50 reflections in the 2θ range $20-23^{\circ}$. Three check reflections measured every 147 reflections showed no significant intensity variation. An absorption correction based on ψ scans was applied, with transmission factors 0.60–0.78.

The structure was solved by the heavy-atom method and subjected to full-matrix least-squares refinement on F; $\sum w(F_o - F_c)^2$ minimized. Au, **P** and F were refined anisotropically, phenyl (but not pentafluorophenyl) groups with idealized geometry. H atoms were included in the refinement using a riding model and with fixed isotropic U values. The weighting scheme was $w^{-1} = \sigma^2(F) + 0.0003F^2$; final R = 0.046, with wR = 0.060; 227 parameters (data to parameter ratio 22.8:1); S = 1.9; maximum $\Delta/\sigma =$ 0.001; maximum, minimum $\Delta \rho = 2.9$, $-1.1 \text{ e} \text{ Å}^{-3}$. The largest difference peaks occurred in 'holes' in the structure and may correspond to small regions of highly disordered solvent, but no attempt was made to refine this. Atomic scattering factors and f', f''values were taken from International Tables for X-ray Crystallography (1974, Vol. IV). The program system used was Siemens SHELXTL-Plus (Sheldrick, 1989) on a MicroVAX II computer. Final atomic coordinates are given in Table 1, with derived bond lengths and angles in Table 2.* The atom-numbering is shown in Fig. 1.

Related literature. The fortuitous preparation of the title compound is described by Thöne (1991). Narrow *ipso* angles in C_6F_5 groups are discussed by Jones (1988). Some Au— C_6F_5 bond lengths are presented by Jones (1992). The tendency of Au atoms in Au^I derivatives to aggregate has been termed 'aurophilicity' by Schmidbaur (1990). A non-parallel arrangement of Au—Cl groups, leading to intermolecular Au—Au contacts, is observed in

 $(dppm)(AuCl)_2$ (Schmidbaur, Wohlleben, Wagner, Orama & Huttner, 1977), whereas a *cis* arrangement similar to that of the title compound is seen in $(dppm)(AuSiMe_3)_2$ (Piana, Wagner & Schubert, 1991).

We thank the Fonds der Chemischen Industrie for financial support.

References

JONES, P. G. (1988). J. Organomet. Chem. 345, 405-411.

JONES, P. G. (1992). Acta Cryst. C48, 1209-1211.

PIANA, H., WAGNER, H. & SCHUBERT, U. (1991). Chem. Ber. 124, 63-67.

SCHMIDBAUR, H. (1990). Gold Bull. 23, 11-21.

SCHMIDBAUR, H., WOHLLEBEN, A., WAGNER, F., ORAMA, O. & HUTTNER, G. (1977). Chem. Ber. 110, 1748–1754.

SHELDRICK, G. M. (1989). SHELXTL-Plus. Version 4.1. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA. THÖNE, C. (1991). PhD Thesis. Univ. of Braunschweig, Germany.

Acta Cryst. (1992). C48, 1314–1315

Bis[1,1-di(2-pyridyl)ethyl methyl ether-N,N',O]copper(II) Di- μ -iodo-bis[iodoargentate(I)]

BY PETER G. JONES

Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, W-3300 Braunschweig, Germany

(Received 14 October 1991; accepted 4 December 1991)

Abstract. [Cu(C₁₃H₁₄N₂O)₂][Ag₂I₄], $M_r = 1215.4$, triclinic, $P\bar{1}$, a = 8.5402 (14), b = 10.0286 (16), c = 10.584 (2) Å, $\alpha = 110.221$ (10), $\beta = 95.476$ (10), $\gamma = 93.420$ (12)°, V = 842.6 (2) Å³, Z = 1, $D_x = 2.395$ Mg m⁻³, λ (Mo $K\alpha$) = 0.71069 Å, $\mu = 5.424$ mm⁻¹, F(000) = 563, T = 293 K, R = 0.034 for 3381 reflections. The Cu atom of the cation lies on a centre of symmetry and is octahedrally coordinated by ligand donor atoms N (at 2.020, 2.000 Å) and O (at 2.393 Å). The centrosymmetric anion displays Ag—I (bridging) 2.780, 2.800, (terminal) 2.679 Å.

Experimental. A pale brown tablet $0.6 \times 0.35 \times 0.12$ mm was mounted in a glass capillary. Using a Stoe four-circle diffractometer, 4493 intensities were registered to $2\theta_{\text{max}} = 55^{\circ}$ with graphite-mono-chromated Mo K α radiation; $2\theta - \theta$ scan mode. Of 3839 unique reflections ($R_{\text{int}} = 0.021$, index ranges h - 11 to 11, k - 13 to 12, $l \ 0$ to 13) 3381 with $F > 4\sigma(F)$ were considered observed. The cell constants

0108-2701/92/071314-02\$06.00

were refined from $\pm \omega$ angles of 46 reflections in the 2θ range $20-23^{\circ}$. Three check reflections measured every 100 reflections showed no significant intensity variation. An absorption correction based on ψ scans was applied, with transmission factors 0.53-0.91.

The structure was solved by the heavy-atom method and subjected to anisotropic full-matrix least-squares refinement on F; $\sum w(F_o - F_c)^2$ minimized. H atoms were included in the refinement using a riding model and with fixed isotropic U. The weighting scheme was $w^{-1} = \sigma^2(F) + 0.0002F^2$; final R = 0.034, with wR = 0.048 (for all data R = 0.039, wR = 0.053); 184 parameters (data to parameter ratio 18.4:1); S = 2.4; maximum $\Delta/\sigma = 0.01$; maximum, minimum $\Delta\rho = 1.53$, $-1.43 \text{ e} \text{ Å}^{-3}$. Atomic scattering factors and f', f' values were taken from *International Tables for X-ray Crystallography* (1974, Vol. IV). The program system used was Siemens *SHELXTL-Plus* (Sheldrick, 1989) on a MicroVAX

© 1992 International Union of Crystallography

^{*} Lists of structure factors, anisotropic thermal parameters, complete bond distances and angles and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54937 (31 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HA0092]